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This paper compares the economic performance of CUSUM and Shewhart schemes for monitoring the process mean. We develop
new simple models for the economic design of Shewhart schemes and more accurate ways to evaluate the economic performance of
CUSUM schemes. The results of the comparative analysis show that the economic advantage of using a CUSUM scheme rather than
the simpler Shewhart chart is substantial only when a single measurement is available at each sampling instance, i.e., only when the
sample size is always n = 1, or when the sample size is constrained to low values.
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1. Introduction

For many years the research community has allocated a
considerable part of its effort to the design of effective qual-
ity control charts. The effectiveness of the charts is usually
evaluated from a statistical point of view, but it is increas-
ingly recognized that since it is the bottom line that matters,
the control chart design must be primarily evaluated using
economic criteria. The objective of this paper is to pro-
vide a thorough economic comparison between the most
frequently used control charts, i.e., the standard Shewhart
chart and the CUSUM chart for monitoring the mean of a
quality characteristic.

Many researchers have developed and proposed models
for the economic optimization of control chart design since
the seminal work of Duncan (1956), who was the first to in-
troduce an economic model for the design of the Shewhart-
type X̄ chart. In Duncan’s model the process is represented
as a series of stochastically identical cycles, ending with the
restoration of the process after the detection of an actual oc-
currence of some assignable cause. The average cost per time
unit is computed as the ratio of the average cost per cycle to
the average duration of a cycle. The optimal chart parame-
ters, i.e., sampling interval h, sample size n and control limit
coefficient k, are those that minimize the average cost per
time unit. This general approach has been extended, with
variations, to more complex charts. The economic design
of the CUSUM chart was first studied by Taylor (1968).
He developed a model similar to that of Duncan (1956) but
without optimizing the sample size and the sampling inter-
val. Goel and Wu (1973) and Chiu (1974) proposed similar
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models and algorithms for determining the economically
optimum design of CUSUM charts and reported some re-
sults of sensitivity analyses.

A general model for the economic design of control
charts has been proposed by Lorenzen and Vance (1986).
Their approach may be used for the selection of the opti-
mal parameters of a variety of charts, including Shewhart,
CUSUM and EWMA, as long as certain statistical mea-
sures of performance, for example the Average Run Length
(ARL), can be computed for any combination of chart pa-
rameters. Simpson and Keats (1995) used two-level frac-
tional factorial designs to identify highly significant param-
eters in the economic model of Lorenzen and Vance (1986)
as applied in the case of a CUSUM chart.

All the above papers and the majority of the litera-
ture about economic control chart design use the expected
cost per time unit as the optimality criterion. An alterna-
tive approach, which was followed by Knappenberger and
Grandage (1969) and Saniga (1977) among others, adopts
the expected cost per item as the optimality criterion. How-
ever, both approaches lead to almost identical optimal chart
designs (Montgomery, 1980).

Over the years there have been only a few papers
that compare Shewhart and CUSUM charts on economic
grounds. Arnold and Von Collani (1987) developed a
method to determine a near-optimal economic design and
then used it to make comparisons between Shewhart and
non-Shewhart charts such as CUSUM charts. They used a
loss-per-item cost function, found the optimal design pa-
rameters of the Shewhart chart and then followed a three-
step procedure to determine a near-optimal non-Shewhart
design: in step 1 they use the optimal sample size of the
Shewhart chart as the sample size of non-Shewhart charts;
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in step 2 they determine the reference value and the control
limit of the non-Shewhart chart by minimizing the out-of-
control ARLδ, keeping the value of the in-control ARL0
equal to that of the Shewhart chart; and finally in step 3
for the sample size of step 1 and the reference value and
the control limit of step 2, they find the sampling inter-
val that minimizes the loss function. They concluded that,
under certain assumptions, Shewhart charts perform very
well and cannot be improved significantly by other, more
complicated charts, such as CUSUM charts.

Nantawong et al. (1989) performed an experiment to
evaluate the effect of three factors (sample size, sampling
interval and magnitude of the shift) on three control charts,
namely Shewhart X̄ chart, CUSUM and geometric moving
average charts, using profit as the evaluation criterion but
without optimizing any of the three charts.

Keats and Simpson (1994) used designed experiments to
identify the cost and model parameters that have a signifi-
cant impact on the average cost of CUSUM and Shewhart
charts. They concluded that CUSUM charts are signifi-
cantly more economical than Shewhart charts, especially
for monitoring processes subject to small shifts. Ho and
Case (1994) have also undertaken a brief economic com-
parison between Shewhart, CUSUM and EWMA charts
and they concluded that both CUSUM and EWMA charts
have a much better economic performance than Shewhart
charts.

From the above exposition it appears that the results of
the previous investigations regarding the relative economic
effectiveness of Shewhart and CUSUM charts are inconclu-
sive. For example, although Arnold and Von Collani (1987)
state that Shewhart charts cannot be improved significantly
by other, more complicated charts, Ho and Case (1994) and
Keats and Simpson (1994) conclude that the anticipated
savings from using a CUSUM chart rather than a Shewhart
one are substantial. This contradiction may be partially
explained by the fact that most models for the economic
evaluation of CUSUM schemes use approximations of the
ARLs in the respective cost functions. Specifically, most
models use the zero-state ARL for detecting a δ-shift in the
mean (ARLδ), which is computed assuming that at the time
of the shift, the value of the CUSUM statistic is equal to
zero. However, when a shift occurs, the process under study
has been typically operating for some time and the value of
the CUSUM statistic may not be zero. In fact, the CUSUM
statistic at the time of the shift is a random variable with
a steady-state distribution. Therefore, the cost function of
the CUSUM chart is computed more accurately using the
steady-state ARLδ, which is the weighted average of all the
ARLδ values given the value of the CUSUM statistic when
the shift occurs, with the weights being the probabilities
of the steady-state distribution of the CUSUM values (see
Crosier (1986)). This is a difficult computation, which the
model presented in this paper avoids by using a somewhat
different approach in formulating the cost functions.

The purpose of this paper is to resolve the existing am-
biguity regarding the relative economic effectiveness of
Shewhart and CUSUM charts. The vehicle is a new, ac-
curate model for the computation of the average quality-
related cost for the case of monitoring a process mean using
a CUSUM chart. Using this tool the paper proceeds to a
systematic numerical investigation of the conditions (prob-
lem characteristics) under which it is worth monitoring the
process mean with a CUSUM chart instead of the simpler
Shewhart X̄ chart. The main finding of this investigation
is that the economic superiority of the CUSUM scheme
is significant only when the sample sizes are restricted to
be unitary, i.e., when rational grouping of observations is
infeasible, or when they are restricted to be very small.

The next section describes the problem in detail and
presents the proposed models for the economic design of
Shewhart and CUSUM charts. Section 3 presents and dis-
cusses the results of the numerical investigation and Section
4 summarizes the conclusions of this research.

2. Problem setting and cost models

We consider a production process that operates indefinitely.
There is a single quality characteristic X that must be moni-
tored on-line, which is assumed to be a normally distributed
random variable with target value µ0 and variance σ 2. Note
that the variance of X is not known in reality but we assume
that it can be accurately estimated by sufficient past data.
Also note that the assumption of the normality of X , which
is typical in the majority of the related literature, is prac-
tically innocuous when the sample sizes are not too small
because then the sample means are anyway approximately
normally distributed by the central limit theorem. However,
if the distribution of X exhibits substantial departures from
normality and the sample sizes are small or unitary, then the
analysis of the relative economic performance of CUSUM
and Shewhart charts must be modified accordingly and is
beyond the scope of this paper.

The process starts in a state of statistical control (“in
control”) with E(X) = µ0 and is subject to the occurrence
of two assignable causes (cause 1 and cause 2) that bring the
process to an out-of-control state by shifting the mean of the
quality characteristic to µ1 = µ0 + δσ or to µ2 = µ0 − δσ

without affecting the standard deviation. The times until
the occurrence of assignable cause 1 and 2 are assumed to
be independent exponentially distributed random variables
with means 1/λ1 and 1/λ2 time units respectively. Therefore,
the expected time until the occurrence of any assignable
cause is 1/λ where λ = λ1 + λ2. The probability that an
assignable cause occurs in an interval of h time units, given
that the interval starts in statistical control, is a function of
h but for simplicity it will be denoted by γ :

γ = 1 − exp(−λh). (1)
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The probability that assignable cause j (j = 1 or 2) occurs
before the other cause in an interval h that starts in control is

γj = λj

λ
γ, j = 1, 2. (2)

It is assumed that after the occurrence of assignable cause
j the process mean will stay at µj until it is restored to µ0.

At each sampling instance a sample of size n is taken,
the sample mean is computed and, depending on its value
and the chart statistic, an alarm may be issued. If the chart
issues no alarm, no action is taken and the next sampling
instance is after exactly h time units. If an alarm is issued, it
is followed by an investigation and then restoration to the
in-control state, if an assignable cause is detected. The pro-
cess may either continue operating or be shut down during
search and repair. It is assumed that the time to sample and
investigate after a false alarm is less than h. Consequently,
the sampling process stops during investigation and restora-
tion because sampling is useless when the process is known
to operate in the out-of-control state. After the detection
and removal of an actual assignable cause the process re-
sumes its operation with µ = µ0; the next sample is then
taken after h time units.

The sampling and inspection cost is c per unit and the
fixed cost per sample is b. The cost of a false alarm is L0, and
the cost of restoring the process after a true alarm is L1 ≥
L0. The additional expected cost per time unit of operation
when the process operates in an out-of-control state is M.
Table 1 contains the notation that has been introduced so
far, as well as the other notation that is used in this paper.

Lorenzen and Vance (1986) have developed a general eco-
nomic model that is representative of a large class of mod-
els, which express the process operation and monitoring as
a succession of stochastically identical cycles and compute
the expected cost per time unit as the ratio of the expected
cycle cost to the expected cycle length using the renewal-
reward theorem. An alternative modeling approach is to
express the evolution of the process by means of Markov
chains as in the works of Knappenberger and Grandage
(1969), Saniga (1977) and Nikolaidis et al. (1997). These pa-
pers deal with the economic minimization of the expected
cost per unit of output. They use the steady-state probabil-
ities that the process is in each particular state at the time of
a sample, and the fractions of time spent in each particular
state during a sampling interval.

In this paper we also employ Markov chains to develop
the models for the economic optimization of both Shewhart
and CUSUM charts. Specifically, we use a two-dimensional
discrete-time Markov chain that describes: (i) the actual
state of the process (operation under statistical control or
under the effect of an assignable cause); and (ii) the decision
that is made at each sampling instance (for Shewhart charts)
or the actual value of the statistic of the CUSUM charts (in
case of CUSUM charts). We start by describing the Markov
model for the Shewhart X̄ chart.

2.1. Shewhart-type chart

For the case of a Shewhart chart with control limits µ0 ±
ksσ/

√
n, the probability of a type I error at each sample is

α = 2�(−ks) whereas the probability of a type II error is
β = �(ks − δ

√
n) − �(−ks − δ

√
n).

Let Yt denote the actual state of the process at sampling
instance t , prior to investigation and restoration if needed,
where Yt = 0 denotes the in-control state (µ = µ0), Yt = 1
refers to the out-of-control state where µ = µ1 = µ0 + δσ

and Yt = 2 refers to the out-of-control state where µ =
µ2 = µ0 − δσ . If at sampling instance t the absolute value
of the standardized sample mean zt = (x̄ − µ0)

√
n/σ ex-

ceeds the control limit ks, then a signal is issued and the
process is investigated; this action/decision is indicated by
at = 1. Otherwise (|zt | < ks), no action is taken: at = 0. The
discrete-time stochastic model for the process and its mon-
itoring scheme is based on the combination of the actual
state of the process Yt and the value of at at every t . The pair
(Yt , at ) constitutes the state of a two-dimensional Discrete-
Time Markov Chain (DTMC) with the special feature that
each step may have a different duration when measured
in actual time units. There are six possible states and the
transition probability matrix is as follows:

(0,0) (0,1) (1,0) (1,1) (2,0) (2,1)

(0,0)

(0,1)

(1,0)

(1,1)

(2,0)

(2,1)




(1 − γ )(1 − α) (1 − γ )α γ1β γ1(1 − β) γ2β γ2(1 − β)

(1 − γ )(1 − α) (1 − γ )α γ1β γ1(1 − β) γ2β γ2(1 − β)

0 0 β (1 − β) 0 0

(1 − γ )(1 − α) (1 − γ )α γ1β γ1(1 − β) γ2β γ2(1 − β)

0 0 0 0 β (1 − β)

(1 − γ )(1 − α) (1 − γ )α γ1β γ1(1 − β) γ2β γ2(1 − β)




.

(3)

The steady-state probabilities of (Yt = i, at = j), de-
noted πij (i = 0, 1, 2, j = 0, 1), are obtained by solving the
respective system of linear steady-state equations and can
be used to evaluate the long-run expected cost per time unit
as the ratio of the average cost of a transition step over its
average duration; if Cij is the expected cost and Tij is the du-
ration of a transition step from state (Yt = i, at = j) of the
DTMC to some other or the same state at the next sampling
instance, then the long-run expected cost per time unit is

ECT1 =
( 2∑

i=0

1∑
j=0

πijCij

)/( 2∑
i=0

1∑
j=0

πijTij

)
. (4)

More specifically, the expected costs Cij between two suc-
cessive sampling epochs associated with the departure from
each of the six possible states of the Markov chain are

C00 = cn + b + M(h − γ /λ),
C01 = cn + b + L0 + M(h − γ /λ),
C10 = C20 = cn + b + Mh,

C11 = C21 = cn + b + M(gn + δ1T1 + δ2T2)
+ L1 + M(h − γ /λ).
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Table 1. Nomenclature

Notation Description

λ Average rate of occurrence of the assignable causes
λj Average rate of occurrence of assignable cause j (j = 1, 2)
τ Expected time of occurrence of the assignable cause within an interval of length h
γ Probability that an assignable cause will occur in an interval of h time units
γj Probability that assignable cause j will occur in an interval of h time units
n Sample size
h Sampling interval
ks Control limit for the Shewhart chart
kc Reference value for the CUSUM chart
H Control limit for the CUSUM chart
σ Standard deviation of the quality characteristic
µ0 Target mean of the quality characteristic
δ Magnitude of the shift in the mean, measured in standard deviations
µ1 Mean of the quality characteristic when the first assignable cause has occurred
µ2 Mean of the quality characteristic when the second assignable cause has occurred
δ1 Index variable indicating whether production continues during searches (1-yes, 0-no)
δ2 Index variable indicating whether production continues during repairs (1-yes, 0-no)
L1 Cost of restoring the process after a true alarm
L0 Cost of a false alarm
c Sampling and inspection cost per unit
b Fixed cost per sample
M Additional expected cost per time unit of operation when the process is out of control
Cij Expected cost between two successive samples associated with departure from state (Yt = i, at = j)
Tij Expected time between two successive samples associated with departure from state (Yt = i, at = j)
ARL0 ARL while the process is in control
ARLδ ARL while the process operates out of control with mean µ1 or µ2

α Probability of a type I error at each sample when using a Shewhart chart
β Probability of a type II error at each sample when using a Shewhart chart
T0 Expected search time when a false alarm is issued
T1 Expected search time to uncover an existing assignable cause
T2 Expected time to repair the process
g Time to sample and chart one item
Yt Actual state of the process when sample t is taken
Ch

t CUSUM statistic for detecting upward shifts
Cl

t CUSUM statistic for detecting downward shifts
Ct Unique CUSUM statistic for use when following the approach of Crosier (1986)
m Number of subintervals (from zero to H and from −H to zero)
w Width of subintervals (from −(m − 1) to m − 1)
pkl

ij Transition probabilities of CUSUM scheme during a sampling interval where i, j (= −m, . . . , m) represent the value
of Ct and k, l(= 0, 1, 2) represent the state of the process

πij Steady-state probabilities where i (= 0, 1, 2) represents the state of the process and j (= 0, 1) represents the decision
whether to overhaul (1) or not (0) (for Shewhart charts) or j (= –m, . . . , m) represents the value of Ct (for CUSUM
charts)

zt Standardized observation at sample t
φ(z) Density function of the standard normal distribution

The respective time lengths Tij are given in Fig. 1. If the
chart issues no signal (Yt = 0, 1, 2 and at = 0) the time
until the next sampling instance is just h. If there is a signal
the time length is increased by the times of investigation
and restoration, unless the alarm is false and the process
continues its operation during the investigation (δ1 = 1);

in that case T0 becomes part of h, assuming it does not
exceed h − gn.

Note that the term cn + b appears in all the above cost
expressions Cij because the sampling cost is the same re-
gardless of the state (Yt = i, at = j). The cost of a false
alarm, L0, appears only in C01 because state (0, 1) is the
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Fig. 1. Time between two successive sampling instances associated with the departure from each of the six states of the Markov
chain.

only one associated with a false alarm. Similarly, the cost
of restoring the process after a true alarm, L1, appears only
in C11, C21.

The expected additional cost of operating under the effect
of an assignable cause during an interval Tij is somewhat less
obvious as it depends on the expected time that the process
operates in an out-of-control state during that interval. This
cost is Mh in intervals starting from states (Yt = 1, at = 0)
and (Yt = 2, at = 0) of the DTMC because these states
signify a type II error of the chart and consequently out-
of-control operation for the entire interval of length h
until the next sample. Cost M(gn + δ1T1 + δ2T2) is in-
curred during the operational time before the removal
of an existing assignable cause when (Yt = 1, at = 1) or
(Yt = 2, at = 1). Finally, M(h − γ /λ) is the expected cost
of out-of-control operation within an interval of length
h, given that the interval starts with the process in con-
trol, i.e., when the DTMC is in state (Yt = 0, at = 0) or
(Yt = 0, at = 1), as well as after the removal of an existing
assignable cause when (Yt = 1, at = 1) or (Yt = 2, at = 1);
see Fig. 1. In particular, if τ denotes the conditional expected
time of the occurrence of an assignable cause within an in-
terval, given that there is such an occurrence within that
interval, then the process will operate under its effect for
an expected time h − τ . Consequently, the unconditional
expected time of out-of-control operation within an inter-
val of length h where the process begins its operation in
the in-control state is γ (h − τ ). From Duncan (1956) it is
known that τ = [1 − (1 + λh) exp(−λh)]/[λ(1 − exp(−λh))]
and since γ = 1 − exp(−λh) we get that γ (h − τ ) =
γ h − γ ((γ − λh + γ λh)/γ λ) = h − γ /λ. Thus, the corre-

sponding expected cost of out-of-control operation is
M(h − γ /λ).

By grouping similar cost terms together, Equation (4) can
be simplified as follows:

ECT1 = {cn + b + M(h − γ /λ) × (π00 + π01 + π11 + π21)
+ Mh(π10 + π20) + L0π01

+ (L1 + M(gn + δ1T1 + δ2T2))
× (π11 + π21)} ÷ {h + π01(1 − δ1)T0

+ (π11 + π21) × (gn + T1 + T2)}. (5)

In the special case where λ1 = λ2 = λ/2, which im-
plies γ1 = γ2 = γ /2, the steady-state probabilities of
(Yt = i, at = j) are

π00 = (1 − γ )(1 − α)(1 − β)
1 − β + βγ

,

π01 = (1 − γ )α(1 − β)
1 − β + βγ

,

π10 = π20 = βγ/2
1 − β + βγ

,

π11 = π21 = (1 − β)γ /2
1 − β + βγ

.

If we substitute for the above πij in Equation (5), we
get:

ECT1 =
{

cn + b + M(h − γ /λ) × 1 − β

1 − β + βγ

+ Mh
βγ

1 − β + βγ
+ L0

(1 − γ )α(1 − β)
1 − β + βγ



138 Nenes and Tagaras

+ (L1 + M(gn + δ1T1 + δ2T2)) × (1 − β)γ
1 − β + βγ

}

÷
{

h + (1 − γ )α(1 − β)
1 − β + βγ

(1 − δ1)T0

+ (1 − β)γ
1 − β + βγ

× (gn + T1 + T2)
}

=
(

(cn + b) × 1 − β + βγ

(1 − β)γ
+ M

(
h

1 − β
− h − 1

λ

+ h
γ

+ gn + δ1T1 + δ2T2

)
+ 1 − γ

γ
L0α + L1

)

÷
(

(1 − δ1)
1 − γ

γ
T0α + h

1 − β

−h + h
γ

+ gn + T1 + T2

)
.

The above expression is almost identical to the cor-
responding one in Lorenzen and Vance (1986). There
is only a small difference in the sampling cost term,
which is due to the different assumption in their model,
namely that sampling never stops as long as the process
operates.

2.2. CUSUM chart

For the case of the monitoring of the process mean using a
CUSUM chart, the usual approach is to use two separate
CUSUM statistics, i.e., Ch

t for detecting upward shifts and
Cl

t for detecting downward shifts:

Ch
t = max

{
0, Ch

t−1 + zt − kc
}
, Ch

0 = 0,

Cl
t = max

{
0, Cl

t−1 − zt − kc
}
, Cl

0 = 0, (6)

where zt = (x̄ − µ0)
√

n/σ is the standardized sample mean
and kc is the reference value of the CUSUM chart. A signal
is issued when either of the two statistics exceeds the control
limit H. An alternative approach, which was proposed by
Crosier (1986), uses a single statistic Ct that can take either
positive or negative values:

Ct = max{0, Ct−1 + zt − kc} if zt + Ct−1 ≥ 0,

Ct = min{0, Ct−1 + zt + kc} if zt + Ct−1 < 0, (7)

and C0 = 0. A signal is issued when Ct ≥ H or Ct ≤ −H.
Whichever approach is used, the ARLs are computed by
one of the methods suggested in the literature, i.e., integral
equations, Markov chain approximations and simulation
(Hawkins and Olwell, 1998).

We conducted a numerical investigation which showed
that the use of the two separate CUSUM charts with the
same kc > 0 always leads to slightly better economic re-
sults than the use of a single statistic. More specifically,
the optimal kc tends to be higher in the single-statistic
approach compared to the optimal value of kc when two
separate CUSUM charts are used, in order to avoid posi-

tive or negative values of the statistic when no assignable
cause is present. Moreover, to counterbalance the higher
value of kc, the optimal value of the control limit H in
the single CUSUM chart approach is lower so as to de-
tect the assignable causes relatively fast. However, in all
cases examined the cost reduction resulting from the use
of two separate CUSUM charts, compared to the single-
statistic approach, was less than 0.5%. Hence, we adopt
the single statistic Ct here because it is easier to for-
mulate, faster to optimize and simpler to implement in
practice.

The Markov chain that describes the evolution of the
process when monitored by a CUSUM X̄ chart is {(Yt , Ct ),
t = 0, 1, 2 . . .} where Yt is again the actual state of the pro-
cess and Ct is the value of the CUSUM statistic at sam-
pling instance t . For practical purposes Ct is discretized
into 2m + 1 values following the approach of Brook and
Evans (1972).

Specifically, we partition the interval [−H, H] into 2m −
1 subintervals and we define w, the width of each subinter-
val, as follows:

w = 2H
2m − 1

⇔ m = H
w

+ 1
2
. (8)

Then, the real value of Ct is transformed to an inte-
ger between −(m − 1) and m − 1 by rounding the ac-
tual value of Ct/w to the closest integer in the set
{−(m − 1), . . . , m − 1}. When the real value of Ct is
such that Ct ≤ −(m − (1/2))w = −H, then its value is
transformed to −m, whereas when the real value of
Ct exceeds (m − (1/2))w = +H, then its value is trans-
formed to m. Thus, with the addition of the “−m”
and “+m” states that correspond to the decisions to
issue a signal, the total number of states increases to
2m + 1.

Using the above discretization of Ct , the Markov chain
has 3 × (2m + 1) possible (Yt , Ct ) states, with transition
probabilities defined as follows:

pkl
ij = P[Ct = j, Yt = l | Ct−1 = i, Yt−1 = k],

i, j = −m, . . . , m and k, l = 0, 1, 2. (9)

Thus, the transition probability matrix takes the
following form:

(0,−m)...(0,m) (1,−m)...(1,m) (2,−m)...(2,m)

(0,−m)
.
.

(0,m)

(1,−m)
.
.

(1,m)

(2,−m)
.
.

(2,m)




p00
ij p01

ij p02
ij

p10
ij p11

ij p12
ij

p20
ij p21

ij p22
ij




.
(10)
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The elements of the above matrix are divided into
nine parts which contain, respectively, the probabilities of
moving from Ct−1 to Ct for each of the nine possible com-
binations of Yt−1 and Yt . The exact expressions for the
transition probabilities pkl

ij are given in the Appendix.
Similarly to the case of Shewhart charts, the steady-

state probabilities πij of (Yt = i, Ct = j) (i = 0, 1, 2, j =
−m, . . . , m) are used to evaluate the expected cost per time
unit function, which can be written as follows:

ECT2 =
{

cn + b + M
(

h − γ

λ

)
×

(
m∑

j=−m

π0j + π1,−m

+ π1m + π2,−m + π2m

)
+Mh

(
m−1∑

j=−(m−1)

(π1j + π2j)

)

+ L0(π0,−m + π0m) + (L1 + M(gn + δ1T1 + δ2T2))

× (π1,−m + π1m + π2,−m + π2m)

}

÷
{

h + (π0,−m + π0m)

× (1 − δ1)T0 + (π1,−m + π1m + π2,−m + π2m)

× (gn + T1 + T2)

}
. (11)

The ECT2 cost function is the exact analog of ECT1 for
the case of CUSUM charts and the explanation of all terms
is similar to the explanation of the terms of ECT1. Note
that this Markovian model does not require the explicit
computation of ARLs and thus Equation (11) avoids any
inaccuracies generated by such a computation.

3. Numerical investigation and comparisons

We undertook a numerical investigation to explore the po-
tential savings from monitoring a process with a CUSUM
chart instead of using the standard Shewhart chart. The
numerical investigation entails 48 cases, covering a broad
range of cost parameters (c, b, M, L0, L1) and process pa-
rameters (λ, δ), as shown in Table 2. In all 48 cases, cer-
tain parameters were kept constant: instantaneous sam-
pling g = 0, restoration cost L1 = 200 and negligible times
to search for an assignable cause and restore the pro-
cess: T0 = T1 = T2 = 0. Although the models are flexible
enough to accommodate non-negligible times for search
and restoration, our numerical investigation has shown that
the effect of these times on the optimal process parameters
and cost is minimal and thus, for the sake of parsimony, we
have kept their values equal to zero. We also assume that
the process is stopped for investigation whenever the chart
issues an alarm (δ1 = 0) as well as when the process is be-
ing restored to the in-control operation after a true alarm
(δ2 = 0). Finally, we set λ1 = λ2 = λ/2 in all cases.

Table 2. Parameter sets of the 48 numerical examples (c = 1 or
4, L1 = 200, g = 0, T0 = T1 = T2 = 0, δ1 = δ2 = 0)

Case b M L0 λ δ

1 0 100 100 0.01 0.5
2 0 100 200 0.01 0.5
3 0 1000 100 0.01 0.5
4 0 1000 200 0.01 0.5
5 5 100 100 0.01 0.5
6 5 100 200 0.01 0.5
7 5 1000 100 0.01 0.5
8 5 1000 200 0.01 0.5
9 0 100 100 0.1 0.5

10 0 100 200 0.1 0.5
11 0 1000 100 0.1 0.5
12 0 1000 200 0.1 0.5
13 5 100 100 0.1 0.5
14 5 100 200 0.1 0.5
15 5 1000 100 0.1 0.5
16 5 1000 200 0.1 0.5
17 0 100 100 0.01 1
18 0 100 200 0.01 1
19 0 1000 100 0.01 1
20 0 1000 200 0.01 1
21 5 100 100 0.01 1
22 5 100 200 0.01 1
23 5 1000 100 0.01 1
24 5 1000 200 0.01 1
25 0 100 100 0.1 1
26 0 100 200 0.1 1
27 0 1000 100 0.1 1
28 0 1000 200 0.1 1
29 5 100 100 0.1 1
30 5 100 200 0.1 1
31 5 1000 100 0.1 1
32 5 1000 200 0.1 1
33 0 100 100 0.01 2
34 0 100 200 0.01 2
35 0 1000 100 0.01 2
36 0 1000 200 0.01 2
37 5 100 100 0.01 2
38 5 100 200 0.01 2
39 5 1000 100 0.01 2
40 5 1000 200 0.01 2
41 0 100 100 0.1 2
42 0 100 200 0.1 2
43 0 1000 100 0.1 2
44 0 1000 200 0.1 2
45 5 100 100 0.1 2
46 5 100 200 0.1 2
47 5 1000 100 0.1 2
48 5 1000 200 0.1 2

For any particular set of parameters we first determine
the economically optimal design and cost of the Shewhart
chart from Equation (5) and then compare them with the
optimal parameters and cost of the CUSUM chart obtained
from Equation (11). To expedite the optimization procedure
we allowed ks and kc to be integer multiples of 0.1 and, by
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setting w = 0.1, we used the same discretization step for
the control limit H of the CUSUM chart with an initial
value of 0.05 (m = 1). Note that the number of states used
to discretize the Markov chain of CUSUM charts, given
w = 0.1, depends on the actual value of H in each case. The

sampling interval h was allowed to vary in 0.01 increments
within the range (0, 0.1); for h ≥ 0.1 the increment was set
equal to 0.1, i.e., h = 0.1 or 0.2 or 0.3 etc.

Table 3 presents the optimal Shewhart and CUSUM pa-
rameters and costs for the 48 cases of Table 2 with the

Table 3. Shewhart charts compared with CUSUM charts (c = 1)

Optimal Shewhart Optimal CUSUM

Case h n ks ECT1 h n kc H ECT2

Percentage cost
improvement (%)

1 7.2 24 1.6 11.76 6.9 23 1.1 0.6 11.72 0.4
2 8.3 32 1.9 12.64 7.8 30 1.3 0.7 12.59 0.4
3 2.2 24 1.6 33.92 2.1 23 1.1 0.6 33.77 0.4
4 2.5 34 2.0 36.81 2.4 31 1.3 0.7 36.64 0.5
5 8.3 27 1.6 12.41 8.0 26 1.1 0.6 12.39 0.2
6 9.1 34 1.9 13.22 9.0 34 1.4 0.6 13.19 0.2
7 2.6 28 1.6 36.01 2.5 27 1.2 0.5 35.94 0.2
8 2.8 35 1.9 38.69 2.7 34 1.4 0.6 38.58 0.3
9 2.8 21 1.5 45.46 2.6 20 0.9 0.7 45.32 0.3

10 3.2 28 1.8 47.70 3.0 26 1.1 0.8 47.53 0.4
11 0.7 23 1.6 117.66 0.7 23 1.1 0.6 117.18 0.4
12 0.8 31 1.9 126.46 0.8 31 1.3 0.7 125.90 0.4
13 3.3 23 1.4 47.13 3.2 22 0.9 0.6 47.05 0.2
14 3.6 31 1.8 49.17 3.5 30 1.2 0.7 49.08 0.2
15 0.8 26 1.6 124.09 0.8 26 1.1 0.6 123.86 0.2
16 0.9 34 1.9 132.18 0.9 34 1.4 0.6 131.86 0.2
17 4.4 10 2.2 7.82 4.4 10 1.5 0.8 7.79 0.4
18 4.7 12 2.5 8.20 4.7 12 1.7 0.9 8.16 0.5
19 1.4 10 2.2 20.82 1.3 10 1.6 0.7 20.72 0.5
20 1.6 13 2.5 22.03 1.4 12 1.7 0.9 21.90 0.6
21 5.9 12 2.2 8.78 5.8 12 1.7 0.6 8.77 0.1
22 6.3 14 2.4 9.09 6.2 14 1.9 0.6 9.08 0.2
23 1.8 12 2.2 23.91 1.8 12 1.7 0.6 23.89 0.1
24 1.9 14 2.5 24.93 1.9 14 1.9 0.6 24.88 0.2
25 1.7 10 2.2 35.90 1.5 9 1.4 0.9 35.80 0.3
26 1.9 12 2.4 36.90 1.7 11 1.6 0.9 36.78 0.3
27 0.5 11 2.2 78.39 0.4 9 1.5 0.8 77.95 0.6
28 0.5 13 2.5 81.97 0.5 12 1.7 0.8 81.66 0.4
29 2.2 11 2.1 38.48 2.2 11 1.6 0.6 38.45 0.1
30 2.3 13 2.4 39.30 2.3 13 1.8 0.6 39.27 0.1
31 0.6 12 2.2 87.81 0.6 12 1.7 0.5 87.75 0.1
32 0.6 14 2.5 90.96 0.6 13 1.8 0.7 90.82 0.2
33 2.7 4 2.8 5.31 2.2 3 1.7 1.1 5.29 0.4
34 2.8 4 2.9 5.46 2.7 4 2.0 1.0 5.44 0.5
35 0.9 4 2.7 12.64 0.7 3 1.7 1.1 12.57 0.6
36 0.9 4 2.9 13.14 0.8 4 2.0 1.1 13.05 0.7
37 4.6 5 2.7 6.71 4.5 5 2.2 0.6 6.71 0.0
38 4.5 5 2.9 6.81 4.6 5 2.3 0.6 6.81 0.0
39 1.4 5 2.7 17.13 1.4 5 2.2 0.6 17.12 0.1
40 1.4 5 2.9 17.47 1.4 5 2.3 0.6 17.46 0.0
41 1.0 4 2.8 29.26 0.8 3 1.7 1.1 29.16 0.3
42 1.0 4 2.9 29.66 1.0 4 2.0 1.0 29.59 0.2
43 0.3 4 2.7 53.17 0.2 3 1.7 1.2 53.02 0.3
44 0.3 4 2.9 54.75 0.3 4 2.0 1.0 54.52 0.4
45 1.7 5 2.7 33.11 1.6 4 2.0 0.6 33.11 0.0
46 1.7 5 2.9 33.38 1.7 5 2.2 0.7 33.36 0.0
47 0.5 5 2.7 67.26 0.5 5 2.2 0.5 67.26 0.0
48 0.5 5 2.8 68.34 0.5 5 2.2 0.7 68.29 0.1
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variable sampling cost per unit c = 1. The percentage profit
resulting from using the optimal CUSUM chart rather than
the optimal Shewhart chart is shown in the final column of
Table 3.

Table 3 shows that the optimal sampling interval and
sample size of the CUSUM scheme do not differ signifi-
cantly from the respective optimal values of the Shewhart
scheme. In particular, in most cases both the optimal h and
n of the CUSUM scheme are marginally smaller than the re-
spective optimal h and n when the Shewhart chart was used.

The cost improvement of the CUSUM scheme over the
standard Shewhart scheme is less than 0.7% in all 48 cases
we have examined. Consequently, it is obvious that from
an economic point of view the CUSUM scheme is not sig-
nificantly superior to the standard Shewhart X̄ chart, even
when the magnitude of the shift is small. Note that Ho
and Case (1994) concluded that the CUSUM chart is much
better than the standard X̄ chart even though their numer-
ical results are very similar to ours. More importantly, our
results contradict those obtained by Keats and Simpson
(1994), who found CUSUM charts to significantly outper-
form Shewhart charts. We conjecture that this contradiction
may be due to the inaccuracy resulting from the computa-
tion and use of the ARLs in the model for the economic
optimization of the CUSUM scheme.

The results of Table 2 are surprising, considering the
widespread understanding that CUSUM charts are far
more effective than Shewhart charts, at least in detecting
small shifts in the mean. In addition, there was a concern
(expressed clearly by one of the referees) about the appro-
priateness of the range of parameters used in the experimen-
tation, given that the optimal values of the sample sizes n
were found to be much larger than what is usual in practice,
especially when the anticipated shifts in the mean are small
(δ = 0.5, cases 1–16). Taking the above observations and
concerns into account we first validated the results of Table
3 by simulation and then expanded the numerical investiga-
tion in order to reinforce our findings. More specifically, we
obtained the optimal designs of the Shewhart and CUSUM
charts for the 48 cases of Table 2 increasing the per unit cost
of inspection from c = 1 to c = 4. The results are shown in
Table 4. The optimal sample sizes decreased, as expected;
for example in the cases with δ = 0.5 the optimal n ranges
between 14 and 18 when c = 4, down from optimal values
as high as n = 35 when c = 1. However, the percentage re-
duction in the average cost from the use of the CUSUM
rather than the Shewhart chart remained negligible and did
not exceed 0.6% in any case. Furthermore, in many of the
16 cases where δ = 0.5 it is better not to sample at all if c = 4
but to search regularly for assignable causes and restore the
process if needed. This type of policy, which resembles pre-
ventive maintenance, is justified when the potential savings
from monitoring the process are small and consequently
insufficient to counterbalance the relatively high sampling
costs. We have also tried various other combinations of pa-
rameters and the conclusion stayed invariably the same, i.e.,

that the differences between the optimum costs of CUSUM
and Shewhart charts are negligible for all sets of process and
cost parameters and even for very small magnitudes of the
shift when the sample sizes are unrestricted.

On the other hand, CUSUM charts for monitoring the
process mean are often based on samples of n = 1, since
there are several applications where only one observation is
available at each sampling instance (Hawkins and Olwell,
1998). It is therefore interesting to investigate the potential
savings of using a CUSUM chart under the restriction that
n = 1 and see whether or not the conclusions are similar to
those of the unrestricted n case. Table 5 presents the results
of the numerical investigation for the same 48 cases with
c = 1, exactly in the same way as in Table 3 but with the
restriction n = 1.

The optimal sampling interval of the CUSUM chart is
now much smaller than the respective one of the Shewhart
chart. Indeed, the restriction on the sample size and the
cumulative nature of the CUSUM scheme leads to a large
number of samples, in order for the chart to be maximally
effective. Thus, the optimal h of the CUSUM chart is much
shorter especially when the magnitude of the shift (δ) is
small.

There are even more cases now (when b is large while δ

and L0 are small) in which it is optimum to investigate reg-
ularly for possible occurrence of assignable causes without
prior sampling because the chart detection power is very
limited when n = 1. This phenomenon is observed mainly
in the case of Shewhart charts, since these charts are not
typically meant to operate with individual measurements
but with rational subgroups (Reynolds and Stoumbos,
2004). There are some cases, though, where this preventive-
maintenance-type policy is better even than monitoring
with a CUSUM chart.

If we exclude the cases where preventive maintenance
outperforms both Shewhart and CUSUM charts, the po-
tential savings from using a CUSUM chart with n = 1 are
great, especially when b and δ are small while M and L0 are
large. Table 5 shows that the cost reduction often exceeds
20% and it may be as high as almost 50% (46.9% in case 20).
Nevertheless, a side-by-side comparison of the costs in Ta-
bles 3 and 5 reveals that in all cases where some SPC-type
monitoring is desirable, the minimum expected cost with
n = 1 is substantially higher than the minimum cost when
the sample size is unrestricted, for both CUSUM and She-
whart charts. Thus, although it is commonly argued that
CUSUM charts have better statistical performance when
using unitary samples (see for example Hawkins and Olwell
(1998) and Reynolds and Stoumbos (2004)), our numerical
investigation shows that their economic performance when
n = 1 is inferior to that of CUSUM charts with larger sam-
ple sizes.

Finally, it should be emphasized that there are many
practical applications where the sample sizes are not
necessarily unitary but they are constrained to relatively
low values for rational subgrouping purposes or other
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Table 4. Shewhart charts compared with CUSUM charts (c = 4)

Optimal Shewhart Optimal CUSUM

Case h n ks ECT1 h n kc H ECT2

Percentage cost
improvement (%)

1 14.9 0 * 14.73 14.9 0 * * 14.73 0.0
2 12.6 15 1.2 18.94 11.9 14 0.7 0.6 18.86 0.4
3 4.5 0 * 45.37 4.5 0 * * 45.37 0.0
4 3.8 17 1.3 58.68 3.6 16 0.8 0.6 58.42 0.4
5 14.9 0 * 14.73 14.9 0 * * 14.73 0.0
6 13.4 16 1.2 19.32 12.7 15 0.7 0.6 19.26 0.3
7 4.5 0 * 45.37 4.5 0 * * 45.37 0.0
8 4.0 18 1.3 59.97 3.8 17 0.8 0.6 59.79 0.3
9 5.7 0 * 48.94 5.7 0 * * 48.94 0.0

10 8.2 0 * 56.15 8.2 0 * * 56.15 0.0
11 1.5 0 * 147.34 1.5 0 * * 147.34 0.0
12 1.3 16 1.2 189.41 1.2 14 0.7 0.6 188.57 0.4
13 5.7 0 * 48.94 5.7 0 * * 48.94 0.0
14 8.2 0 * 56.15 8.2 0 * * 56.15 0.0
15 1.5 0 * 147.34 1.5 0 * * 147.34 0.0
16 1.4 17 1.2 193.23 1.3 16 0.7 0.6 192.60 0.3
17 7.2 6 1.6 11.76 7.1 6 1.1 0.6 11.72 0.4
18 8.3 8 1.9 12.64 8.1 8 1.3 0.7 12.59 0.4
19 2.2 6 1.6 33.92 2.2 6 1.1 0.6 33.78 0.4
20 2.5 8 1.9 36.82 2.5 8 1.4 0.6 36.65 0.5
21 8.5 7 1.6 12.41 8.4 7 1.2 0.5 12.39 0.1
22 9.5 9 1.9 13.22 8.6 8 1.3 0.7 13.19 0.2
23 2.6 7 1.6 36.01 2.5 7 1.2 0.5 35.95 0.2
24 2.9 9 1.9 38.69 2.8 9 1.4 0.6 38.59 0.3
25 2.7 5 1.5 45.47 2.6 5 0.9 0.7 45.32 0.3
26 3.2 7 1.8 47.70 3.1 7 1.2 0.7 47.54 0.3
27 0.7 6 1.6 117.68 0.7 6 1.1 0.6 117.21 0.4
28 0.8 8 1.9 126.49 0.8 8 1.3 0.7 125.96 0.4
29 3.2 6 1.5 47.13 3.3 6 1.0 0.5 47.07 0.1
30 3.7 8 1.8 49.18 3.5 7 1.1 0.7 49.09 0.2
31 0.9 7 1.6 124.23 0.8 6 1.1 0.5 123.95 0.2
32 0.9 8 1.9 132.36 0.9 8 1.3 0.7 132.00 0.3
33 4.9 3 2.3 7.86 3.7 2 1.4 0.9 7.82 0.4
34 4.7 3 2.5 8.20 4.7 3 1.7 0.9 8.16 0.5
35 1.5 3 2.3 20.90 1.1 2 1.4 0.9 20.85 0.3
36 1.5 3 2.5 22.03 1.4 3 1.7 0.9 21.90 0.6
37 5.9 3 2.2 8.78 5.8 3 1.7 0.6 8.77 0.1
38 6.7 4 2.5 9.13 5.7 3 1.7 0.8 9.11 0.2
39 1.8 3 2.2 23.91 1.8 3 1.7 0.6 23.89 0.1
40 2.0 4 2.5 25.03 2.0 4 2.0 0.6 25.00 0.1
41 1.5 2 2.1 36.03 1.4 2 1.3 1.0 35.84 0.5
42 1.9 3 2.4 36.90 1.8 3 1.7 0.8 36.81 0.2
43 0.5 3 2.3 78.60 0.4 2 1.3 1.0 78.44 0.2
44 0.5 3 2.4 82.04 0.5 3 1.7 0.8 81.66 0.5
45 2.3 3 2.1 38.50 2.3 3 1.6 0.6 38.47 0.1
46 2.3 3 2.3 39.35 2.2 3 1.7 0.7 39.29 0.2
47 0.6 3 2.2 87.81 0.6 3 1.7 0.5 87.75 0.1
48 0.7 4 2.5 91.36 0.6 3 1.7 0.7 91.17 0.2

∗Preventive maintenance is optimal (n = 0).

reasons. Constraining the value of the sample size to, say,
n ≤ 5 would result in a CUSUM chart significantly out-
performing the respective Shewhart chart, unless of course
the optimum unconstrained sample size would anyway be

not much larger than five. The difference in the economic
performance of the two charts if there is a restriction on
the sample size will be somewhere between the observed
differences in the cases of unconstrained n and n = 1.
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Table 5. Shewhart charts compared with CUSUM charts for n = 1 (c = 1)

Optimal Shewhart Optimal CUSUM

Case h ks ECT1 h kc H ECT2

Percentage cost
improvement (%)

1 14.9 * 14.73 0.3 0.2 6.6 12.57 14.7
2 21.5 * 19.32 0.3 0.2 8.0 13.77 28.7
3 4.5 * 45.37 0.09 0.2 6.7 36.72 19.1
4 6.5 * 62.58 0.07 0.2 9.1 40.46 35.3
5 14.9 * 14.73 14.9 * * 14.73 0.0
6 21.5 * 19.32 21.5 * * 19.32 0.0
7 4.5 * 45.37 4.5 * * 45.37 0.0
8 6.5 * 62.58 6.5 * * 62.58 0.0
9 5.7 * 48.94 0.1 0.2 7.1 47.44 3.1

10 8.2 * 56.15 0.1 0.2 8.5 49.75 11.4
11 1.5 * 147.34 0.03 0.2 6.6 125.68 14.7
12 2.1 * 193.26 0.03 0.2 8.0 137.72 28.7
13 5.7 * 48.94 5.7 * * 48.94 0.0
14 8.2 * 56.15 8.2 * * 56.15 0.0
15 1.5 * 147.34 1.5 * * 147.34 0.0
16 2.1 * 193.26 2.1 * * 193.26 0.0
17 0.7 2.2 12.46 0.4 0.5 4.5 8.43 32.3
18 0.5 2.5 15.21 0.4 0.5 5.1 8.91 41.4
19 0.2 2.2 36.65 0.1 0.5 4.9 23.14 36.9
20 0.2 2.4 46.07 0.1 0.5 5.5 24.46 46.9
21 14.9 * 14.73 1.8 0.4 2.3 13.78 6.5
22 2.9 1.7 18.77 1.4 0.4 3.3 15.23 18.9
23 4.5 * 45.37 0.5 0.4 2.4 40.89 9.9
24 0.7 1.8 58.72 0.4 0.4 3.5 45.80 22.0
25 0.3 2.2 46.38 0.2 0.4 4.5 37.45 19.2
26 0.3 2.4 52.24 0.2 0.4 5.3 38.94 25.5
27 0.07 2.2 124.56 0.04 0.5 4.5 84.34 32.3
28 0.05 2.5 152.11 0.04 0.5 5.1 89.14 41.4
29 5.7 * 48.94 5.7 * * 48.94 0.0
30 8.2 * 56.15 0.7 0.4 2.8 52.88 5.8
31 1.5 * 147.34 0.2 0.4 2.1 138.05 6.3
32 0.3 1.7 187.83 0.2 0.4 2.7 155.09 17.4
33 0.8 2.6 6.79 0.7 1.0 2.6 5.61 17.4
34 0.7 2.8 7.65 0.6 1.0 3.1 5.82 24.0
35 0.3 2.5 17.57 0.2 1.0 2.7 13.61 22.6
36 0.2 2.8 20.42 0.2 1.0 3.0 14.28 30.0
37 2.8 2.0 9.64 2.4 0.9 1.6 9.12 5.3
38 2.6 2.2 10.89 2.0 0.9 2.1 9.78 10.2
39 0.9 2.0 26.93 0.7 0.9 1.6 25.16 6.6
40 0.8 2.2 31.09 0.6 0.9 2.1 27.31 12.1
41 0.3 2.6 33.04 0.3 0.9 2.6 30.06 9.0
42 0.3 2.7 35.31 0.2 1.0 3.1 30.65 13.2
43 0.08 2.6 67.89 0.07 1.0 2.6 56.05 17.4
44 0.07 2.8 76.54 0.06 1.0 3.1 58.18 24.0
45 1.2 1.9 40.11 1.0 0.8 1.6 39.02 2.7
46 1.2 2.1 43.11 0.9 0.9 1.9 40.67 5.7
47 0.3 1.9 96.40 0.2 0.9 1.8 91.88 4.7
48 0.3 2.1 109.24 0.2 0.9 2.1 97.77 10.5

∗Preventive maintenance is optimal (n = 0).

Consider for example case 1 of Table 2 with c = 1. If there
is no restriction in the sample size, from Table 3 we see
that the two charts have relatively large sample sizes and
almost identical average costs: ECT1 = 11.76 with n = 24

for the Shewhart chart, ECT2 = 11.72 with n = 23 for the
CUSUM. If the sample size is constrained by n ≤ 5 for
rational subgrouping purposes, then the average costs of
the two constrained–optimal chart designs (with n = 5) are
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ECT1 = 14.12 and ECT2 = 12.39 (a 12.3% cost difference).
If the restriction n = 1 is imposed on the sample size then we
see from Table 5 that ECT1 = 14.73, ECT2 = 12.57 and the
economic advantage of the CUSUM increases to 14.7% .

4. Summary and conclusions

We have presented simple and accurate Markov chain
models for the economic optimization of Shewhart and
CUSUM charts for monitoring the mean of a normally
distributed quality characteristic. Our numerical investiga-
tion has led to the following conclusions.

1. CUSUM charts are economically far superior to She-
whart charts only if process monitoring must be
performed on the basis of individual measurements
(sample size n = 1). If there are no restrictions on the
size of each sample, the economic performance of the
optimal CUSUM chart is almost identical to the per-
formance of the optimal Shewhart chart even when the
magnitude of the anticipated shift is small. In between
these two extreme cases, namely if the sample size is re-
stricted to low values for reasons such as the need for
rational subgrouping, the CUSUM chart may signifi-
cantly outperform the Shewhart chart when the shifts in
the mean are small.

2. From a pure economic perspective and if there are no
restrictions on the sample size n, the common choice
of n = 4 or n = 5 is always inferior to larger sample
sizes when the magnitude of the shift is small, both for
Shewhart and CUSUM charts. Sample sizes n ≤ 5 may
be economically optimal only if the magnitude of the
anticipated shift is moderate to large and the sampling
cost is not very low.

3. When the sample size is by necessity restricted to n = 1
and/or when the sampling cost is high and the mag-
nitude of the shift is small, it is often optimal not to
monitor the process through sampling but to control it
by means of a preventive-maintenance-type policy. Con-
sequently, this option should always be considered as an
alternative to the usual SPC procedures.
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Appendix

Derivation of the transition probabilities pkl
ij

of the CUSUM scheme

The exact values of the transition probabilities (9) are com-
puted from the following relationships, where ϕ(z) is the
density function of the standard normal distribution.
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p00
ij =




(1 − γ ) ×
∫ ((1/2)−i)w+kc

(−(1/2)−i)w−kc

ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = 0,

(1 − γ ) ×
∫ ((1/2)−i+j)w−kc

(−(1/2)−i+j)w−kc

ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = −(m − 1), . . . ,−1,

(1 − γ ) ×
∫ ((1/2)−i+j)w+kc

(−(1/2)−i+j)w+kc

ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = 1, . . . , m − 1,

(1 − γ ) ×
∫ −(m−(1/2))w−iw−kc

−∞
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = −m,

(1 − γ ) ×
∫ ∞

(m−(1/2))w−iw+kc

ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = m,

p00
0j , i = m or i = −m, j = −m, . . . , m.

p10
ij =

{
0, i = −(m − 1), . . . , m − 1, j = −m, . . . , m,

p00
0j , i = m or i = −m, j = −m, . . . , m.

p20
ij =

{
0, i = −(m − 1), . . . , m − 1, j = −m, . . . , m,

p00
0j , i = m or i = −m, j = −m, . . . , m.

p01
ij =




γ1 ×
∫ ((1/2)−i)w+kc−δ

√
n

(−(1/2)−i)w−kc−δ
√

n
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = 0,

γ1 ×
∫ ((1/2)−i+j)w−kc−δ

√
n

(−(1/2)−i+j)w−kc−δ
√

n
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = −(m − 1), . . . ,−1,

γ1 ×
∫ ((1/2)−i+j)w+kc−δ

√
n

(−(1/2)−i+j)w+kc−δ
√

n
ϕ(z)dz, i = −(m − 1), . . . m − 1, j = 1, . . . , m − 1,

γ1 ×
∫ −(m−(1/2))w−iw−kc−δ

√
n

−∞
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = −m,

γ1 ×
∫ ∞

(m−(1/2))w−iw+kc−δ
√

n
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = m,

p01
0j , i = m or i = −m, j = −m, . . . , m,

p11
ij =




∫ ((1/2)−i)w+kc−δ
√

n

(−(1/2)−i)w−kc−δ
√

n
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = 0,

∫ ((1/2)−i+j)w−kc−δ
√

n

(−(1/2)−i+j)w−kc−δ
√

n
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = −(m − 1), . . . , −1,

∫ ((1/2)−i+j)w+kc−δ
√

n

(−(1/2)−i+j)w+kc−δ
√

n
ϕ(z)dz,i = −(m − 1), . . . , m − 1, j = 1, . . . , m − 1,

∫ −(m−(1/2))w−iw−kc−δ
√

n

−∞
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = −m,

∫ ∞

(m−(1/2))w−iw+kc−δ
√

n
ϕ(z)dz, i = −(m − 1), . . . , m − 1, j = m.

p01
0j , i = m or i = −m, j = −m, . . . , m.

p21
ij =

{
0, i = −(m − 1), . . . , m − 1, j = −m, . . . , m,

p01
0j , i = m or i = −m, j = −m, . . . , m.

p12
ij =

{
0, i = −(m − 1), . . . , m − 1, j = −m, . . . , m,

p02
0j , i = m or i = −m, j = −m, . . . , m.
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Note that p02
ij is computed based on the set of equations

for p01
ij , by setting γ2 instead of γ1 and +δ

√
n instead of

–δ
√

n. On the other hand, p22
ij is computed based on the set

of equations for p11
ij , by setting +δ

√
n instead of −δ

√
n.
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